Posts Tagged ‘method of multiple working hypotheses’

The Importance of Model Thinking

datePosted on 14 June 2012 by cjf

Models can help us understand, predict, strategize, and re-design our worlds. This is the profound lesson from Scott E. Page’s engaging on-line Coursera offering on Model Thinking. I was particularly interested in this 10 week course because Buckminster Fuller instilled in me a deep appreciation for models. With this course, Scott Page reinforced and enhanced that appreciation in spades. Also, like Bucky, Page makes his penetrating approach accessible to a very broad audience. This is a great course for anyone with even rudimentary algebra skills.

In addition to reviewing the course, I will also suggest that model thinking is a new more incisive kind of science. This approach and its nascent toolkit for understanding, decision-making, prediction, strategy, and design is vitally important for practitioners of all types. Model thinking may be just the type of tool humanity needs to solve some of its thorniest problems. As such its arrival into broader consciousness is not a moment too soon!

So if you want to be out there helping to change the world in useful ways, it’s really really helpful to have some understanding of models.
— Scott E. Page

Why Model Thinking

There are many ways to model the world. One of the most popular is with proverbs or short pithy sayings (our modern media seem to particularly love this deeply flawed “sound bite” approach to knowledge). As Scott Page points out, there are opposite proverbs too. For instance, the opposite of “nothing ventured, nothing gained” is “better safe than sorry.” Proverbs and their more elaborate cousins, allegories, can model or represent the world with persuasive stories, but they provide little discerning power and little basis for deeper understanding. In contradistinction, model thinking with its greater concern for precision can help us more carefully distinguish a complex of important factors with their interrelationships and behaviors. Therein lies its power!

Is intuition sufficient? No! Philip Tetlock, Robyn Dawes and others have demonstrated that simple naive models outperform experts of all stripes. In 1979 Dawes wrote a seminal paper, The Robust Beauty of Improper Linear Models in Decision Making, which showed the effectiveness of even “improper” linear models in outperforming human prognostication. Tetlock has made the most ambitious and extensive study of experts to date and finds that crude extrapolation models outperform humans in every domain he has studied.

That is not to say that models are “right”. Page emphasizes that all models are “wrong” too! Which leads to his most profound insight in the course: you need many types of models to help think through the logic of any given situation. Each model can help check, validate, and build your understanding. This depth of understanding is essential to make better decisions or predictions or build more effective designs or develop more effective strategies to achieve your goals.

Is intuition important? Yes, absolutely! The many model thinker relies upon intuition to select and critically evaluate a battery of models or to construct new or modified models when appropriate. These models help test our intuition. Intuition helps tests the models! Writing out a model often identifies facets and elements of the situation which intuition misses. Intuition is essential to find the aspects of the models that are a bit off the mark — and all models are a bit off. Model thinking is not “flying on instruments” or turning control over to mathematical or computer models. Instead it is about evaluating and comparing diverse models to test, build, fortify, and correct our intuitions, decisions, predictions, designs, and strategies.

Fascinating Models

Page’s course is filled to the brim with fascinating models! One of the first models Page introduces is Thomas Schelling’s segregation model which represents people as agents on a checkerboard. We discover deep and unexpected insights about how people sort themselves into clusters where everyone looks alike, for example, the segregation of neighborhoods based on race, ethnicity, income, etc. It is the first of many agent-based models to be discussed.

Read the rest of this essay »

Share |

In a poignant lecture on The Logic of Science (412 MB QuickTime video download; 6800 word transcript), Stephen Stearns provides some of the most practical results from the philosophy of science possible in an introductory 45 minute lecture. Together with reading T. C. Chamberlin‘s essay The Method of Multiple Working Hypotheses, watching Kevin Kelly’s lecture The Next 100 Years of Science: Long-term Trends in the Scientific Method (video at fora.tv) and participating in a recent discussion on On the Nature, Being, and Logic of Science at The Ben Franklin Thinking Society, I’m inspired to formulate and share some of my thoughts about the ever-changing “ways of knowing” that we call science. Even more so because the 2011 Design Science Symposium that I am helping to organize will try to broach the subject of the science in Buckminster Fuller’s Synergetics.

Perhaps, the most intriguing thing I learned from the Stearns lecture was the importance of the method of multiple working hypotheses. I decided to read the source, a 1965 reprint of T. C. Chamberlin’s classic 1890 essay “The Method of Multiple Working Hypotheses” (here is a printable PDF). I was hit by the insidiousness of the bias inherent in the hypothetico-deductive model of science which unfortunately is still taught as dogma in many science classes today. I was shocked to realize how counterproductive it can be to focus on developing and testing a simple working hypothesis, a style of thinking that I have frequently used and must now grow beyond!

Chamberlin convinced me that in science and in life we must challenge ourselves to imagine a comprehensive array of possible explanations (hypotheses). Only in this way can we get sufficient perspective to clearly see the kind of questions, observations and experiments that might tease out Truth from the inherent complexity of Universe. Wow, isn’t that the essence of Buckminster Fuller’s Synergetics: comprehensive thinking?

[In practicing the method of multiple working hypotheses] the mind appears to become possessed of the power of simultaneous vision from different standpoints. Phenomena appear to become capable of being viewed analytically and synthetically at once. — T. C. Chamberlin, 1890

My next step on the ladder to understanding scientific knowledge was Kevin Kelly’s fascinating 02006 talk on Long-term Trends in the Scientific Method (video). Kelly suggests that science is driven by applying knowledge to itself recursively or self-similarly. Kelly included a timeline which I have modified to give a slice through some milestones in the history of scientific ways of knowing:

Read the rest of this essay »

Share |