Archive for ‘Synergetics’ Category
Browse:
Synergetics »
Subcategories:

“Comprehensively Commanded Automation”

datePosted on 1 November 2020 by cjf

The title is a puzzling but evocative expression from Bucky Fuller’s book “Operating Manual for Spaceship Earth”. Our exploration of it will show that Bucky’s book is, perhaps, his most concise articulation of his full philosophical vision. Before I try to interpret it, let me provide some background.

Last year, I wrote a synopsis for Buckminster Fuller’s “Operating Manual for Spaceship Earth”. Recently, I wrote another synopsis of “Operating Manual” for the Comprehensivist Wednesdays series. Inspired by my presentation on Bucky’s Comprehensive Thinking, Shrikant Rangnekar of 52 Living Ideas has organized a series of events on Bucky’s Operating Manual for Spaceship Earth. This essay was written to provide ideas in support of the 7 November 2020 event on “Operating Manual” for that series (crossposted at The Greater Philadelphia Thinking Society).

Introducing “Comprehensively Commanded Automation”

When I wrote my first synopsis of R. Buckminster Fuller’s 1969 book “Operating Manual for Spaceship Earth” last year, I identified the title of chapter 3 “Comprehensively Commanded Automation” as a significant idea in the book. It is not a catchphrase. I do not think Bucky ever used the phrase again. This essay will show how my interpretation of “Operating Manual” sees this phrase as a significant unifying concept in the book that resonates repeatedly with the text revealing meanings that might otherwise be missed.



Read the rest of this essay »
Share |

To celebrate the 50th anniversary of the publication of Buckminster (“Bucky”) Fuller’s “Operating Manual for Spaceship Earth”, I re-read the book twice over the last four months. Doing so, I glimpsed a way to integrate its ideas into a brief overview. My idea is to read through its mythologizing and storytelling—fun though they are—to avoid getting distracted in interpreting and assessing all that. And to highlight its key ideas as I prepare for a group exploration of the book on 30 November 2019.

Operating Manual for Spaceship Earth by R. Buckminster Fuller

Note: All quotes are from the book.

Synopsis

Intellectual specialization precludes understanding our place in Universe. “[S]pecialization precludes comprehensive thinking.” Bucky argues for our innate comprehensivity meaning to comprehend comprehensively, to comprehend our worlds broadly and deeply, to be “macro-comprehensive and micro-incisive”.

“Comprehensively commanded automation” (the title of chapter 3) refers to the way in which “the omni-interrelated and omni-interaccommodative” generalized principles, such as the principle of leverage, Einstein’s E=mc², the conservation of energy, and the thermodynamics of entropy, intricately automates the basic operations and behaviors of our Universe. Everything in Universe (comprehensive) is subject to these principles (commanded) so that no one has to plan for, specify, calculate, or certify that the resultant behaviors fully accommodate all the principles when an apple falls from a tree (automation). Even you and I are predominantly automated in that we don’t consciously direct our foods to our bodily tissues, glands, and organs. Our automated energy supply ships, Sun and Moon, together with all our principles of astronomy, optics, and geology have hidden in plain sight the fact that we are all astronauts aboard Spaceship Earth and always have been. “Comprehensively commanded automation” also suggests how these principles generate “inexorable evolution”.

The storyline of the book hinges in chapter 4 “Spaceship Earth” where we apply our innate predilection for comprehensivity to examine the question of why did this exquisitely designed automaton, Spaceship Earth, include no instruction book? It could be that we were designed to have to exercise our intellects to figure out how the world works, to discover its generalized principles, with only a minimum of pre-programming as instinct. That implies that we have designed into us the facility to imagine and then apply (test out) an ever increasing array of ever more generalized principles which we accumulate as part of our cultural heritage. These imagined and verified principles have provided good enough models of the actual mechanism of automation for our spaceship that our design capability has attained an unprecedented aptitude. We have succeeded to an extraordinary degree: witness Einstein’s accomplishments, quantum electrodynamics, the Moon landing, Cassini-Huygens, global communication in a pocket-sized device, and so much more. We have discovered a function of our intellect in Universe: making sense of the world and how it works and putting that know-how to use.

“We have not been seeing our Spaceship Earth as an integrally-designed machine which to be persistently successful must be comprehended and serviced in total.”
— R. Buckminster Fuller in “Operating Manual for Spaceship Earth”

Read the rest of this essay »

Share |

In Buckminster Fuller’s magnum opus, Synergetics, he makes the audacious assertion that “The subjective and objective always and only coexist and therewith demonstrate the inherent plurality of unity: inseparable union” (see 1013.16). I had forgotten that, but I had remembered that in reading Bucky my understanding of the words “subjective” and “objective” was enriched and enlivened.

I subliminally remembered this quote at the end of my study of Modern and Contemporary American Poetry (ModPo) with Al Filreis of the University of Pennsylvania. On 18 November 2015, I attempted to explain the idea to the ModPo community.

But what did Bucky mean by “the subjective and objective always and only coexist”? Let me give my interpretation and suggest its profound significance for our lives and in characterizing the nature of Bucky’s notion of design science.

Subjectivity and Objectivity 1, illustration by Jeannie Moberly

In Bucky’s Synergetics (and probably in his entire oeuvre), I think by “objective” he usually means voluntarily working to realize an objective, a goal, or a purpose whereas by “subjective” he means involuntarily subjected to happenings (which may be due to necessity or chance or circumstance). Bucky’s meanings for “objective” and “subjective” are logical variants of their root words “object” and “subject” even though they are not the most common in contemporary parlance.

Do you agree that “objective” and “subjective” can be used in this way?

Here is my evidence for Bucky’s usage: In 302.00 and 305.05, he explicitly identifies objective with voluntary and subjective with involuntary. In 986.032, he identifies objective with experimental and subjective with experiential. In 100.010, Bucky identifies objective with active/self and subjective with passive/otherness.

Do you agree with my interpretation of Bucky’s use of the words “objective” and “subjective”? Can you cite other Bucky passages that further clarify his thinking?

Does Universe relentlessly subjugate us to situations which we did not voluntarily choose? Simultaneously, are we not also the agents of ongoing genesis intentionally and objectively building our futures (to paraphrase Harold G. Nelson and Erik Stolterman in their profound 2012 book The Design Way)?

Read the rest of this essay »

Share |

I participated in the ReVIEWING Black Mountain College 4: Looking Forward at Buckminster Fuller’s Legacy conference on September 28-30, 2012 in Asheville, NC, USA. I gave two talks (click on the links below to see the PDF presentations):

  • Education Automation Now and in the Future. In this talk I recognize Buckminster Fuller as one of the conceptual founding fathers of the Open Educational Resources (OER) movement, detail six of his educational ideas, and give a brief review of several OER courses I’ve taken to indicate the kind of comprehensive education now possible using freely available on-line courses.
  • Synergetics and Model Thinking. In this talk I synthesize Scott E. Page’s Model Thinking with Buckminster Fuller’s Synergetics. I introduce both subjects, then discuss the importance of model thinking. Then I sketch some ideas about how Model Thinking and Synergetics can inform a more incisive approach to science.

Please share any thoughts you might have about these presentations in the comments. I would value your feedback.

Share |

In a poignant lecture on The Logic of Science (412 MB QuickTime video download; 6800 word transcript), Stephen Stearns provides some of the most practical results from the philosophy of science possible in an introductory 45 minute lecture. Together with reading T. C. Chamberlin‘s essay The Method of Multiple Working Hypotheses, watching Kevin Kelly’s lecture The Next 100 Years of Science: Long-term Trends in the Scientific Method (video at fora.tv) and participating in a recent discussion on On the Nature, Being, and Logic of Science at The Ben Franklin Thinking Society, I’m inspired to formulate and share some of my thoughts about the ever-changing “ways of knowing” that we call science. Even more so because the 2011 Design Science Symposium that I am helping to organize will try to broach the subject of the science in Buckminster Fuller’s Synergetics.

Perhaps, the most intriguing thing I learned from the Stearns lecture was the importance of the method of multiple working hypotheses. I decided to read the source, a 1965 reprint of T. C. Chamberlin’s classic 1890 essay “The Method of Multiple Working Hypotheses” (here is a printable PDF). I was hit by the insidiousness of the bias inherent in the hypothetico-deductive model of science which unfortunately is still taught as dogma in many science classes today. I was shocked to realize how counterproductive it can be to focus on developing and testing a simple working hypothesis, a style of thinking that I have frequently used and must now grow beyond!

Chamberlin convinced me that in science and in life we must challenge ourselves to imagine a comprehensive array of possible explanations (hypotheses). Only in this way can we get sufficient perspective to clearly see the kind of questions, observations and experiments that might tease out Truth from the inherent complexity of Universe. Wow, isn’t that the essence of Buckminster Fuller’s Synergetics: comprehensive thinking?

[In practicing the method of multiple working hypotheses] the mind appears to become possessed of the power of simultaneous vision from different standpoints. Phenomena appear to become capable of being viewed analytically and synthetically at once. — T. C. Chamberlin, 1890

My next step on the ladder to understanding scientific knowledge was Kevin Kelly’s fascinating 02006 talk on Long-term Trends in the Scientific Method (video). Kelly suggests that science is driven by applying knowledge to itself recursively or self-similarly. Kelly included a timeline which I have modified to give a slice through some milestones in the history of scientific ways of knowing:

Read the rest of this essay »

Share |

Society and Our Technology Built World

datePosted on 2 June 2011 by cjf

The interrelationships between society and technology run deep. We all partake and participate in the unfolding technology evolution “discussion” Invention by Design by Henry Petroski that is our lives. The tools we use, try out, improvise, critique, and/or advocate are our minimal contributions to this discussion. The accidents of technological history set the context for the discussion. We are all technologists entangled in a technological world! Technology has been the main (perhaps the only?) means by which human progress has been achieved with tools like the pencil, slide fastener (or zipper), jet airplane, water systems, skyscrapers, bridges, and computers all dramatically changing society. Henry Petroski’s great short book “Invention by Design: How Engineers Get from Thought to Thing” explores the design and engineering arts in the full richness of their social context in nine intriguing case studies.

I first read Invention by Design in February 1999. Recently I was re-reading it when Michael Tweed of the The Ben Franklin Thinking Society invited me to lead the group’s Science & Technology meetup every month. That led to the Discussion: Engineering Failures & Society on 8 May 2011. Here are some thoughts reflecting on Petroski’s book, the 8 May meetup, and further cogitating about the big picture of society and technology. Hopefully these notes and your feedback will help us better understand the technological world at the core of our ever changing civilization.

What is Technology?

Technology is the catch-all term used to describe objects and the networks, systems, and infrastructures in which they are embedded, as well as the patterns of use that we impose upon them and they upon us. Technology is clearly context-dependent and ever evolving. — Henry Petroski

Petroski’s definition suggests that civilization itself may be technology. So it would seem that technology embraces culture, values, psychology, history, and the multidimensional elements of the environment (materials science, biology, anthropology, geophysics, chemistry, etc.). Buckminster Fuller goes further:

In its complexities of design integrity, the Universe is technology. The technology evolved by man is thus far amateurish compared to the elegance of nonhumanly contrived regeneration. Man does not spontaneously recognize technology other than his own, so he speaks of the rest as something he ignorantly calls nature. — Buckminster Fuller, Synergetics, 172.00-173.00

By taking Petroski’s “networks, systems, and infrastructures” to the next level of “design integrities” and identifying it as technology, Bucky leads us to the biggest of big pictures: Universe itself! As social creatures we often think of society as the big picture. I think his point is well made: technology is an inhernet component of Universe itself. Human society is our storied Earth-developed technology. It seems likely that Human society will become the “brain” managing the regenerative ecological functions of Gaia, the theory that Earth is “alive”. If that happens, the storied technology of Earth would probably become even more syntropic and powerful than what life has achieved thus far. Regardless, society and the technology with which it is built are inextricably intertwined!

Design and Engineering in Society

Design and engineering are the arts of consciously working to evolve and develop our technological infrastructure to improve our worlds. Petroski emphasizes the role of society in the engineering process and vice versa in these illuminating quotes:

Read the rest of this essay »

Share |

The view that randomness impacts and shapes our lives in profound ways has been gaining traction since 2002 when Daniel Kahneman won the Nobel prize in Economics for his work with Amos Tversky in characterizing human weaknesses when facing uncertainty. My thinking on the subject was first awakened by reading Nassim Nicholas Taleb’s book Fooled by Randomness which will give anyone who imagines they can think “rationally” a healthy dose of humble pie. A more helpful discussion can be found in Jonah Lehrer’s How We Decide which The Drunkard's Walk by Leonard Mlodinow pays heed to our brain’s strengths while acknowledging our weaknesses. As I relayed in a post on the brain, mind and thinking, Lehrer recommends thinking about your thinking process to strengthen its decision-making function. Recently I finished reading Leonard Mlodinow’s The Drunkard’s Walk: How Randomness Rules our Lives which provides an accessible, historically detailed, and elementary introduction to the sciences of randomness and uncertainty and shows how they rule our lives.

These books have started to change my thinking about the nature of reality itself: I see now that randomness and uncertainty have an essential role to play. Interestingly, I shunned probability and statistics, the sciences of randomness and uncertainty, in college because I was steeped in Euclid, logic, and Buckminster Fuller’s “generalized principles” in Synergetics. I wanted to design destiny with deliberate application of knowledge … to worship at the altar of scientific determinism. Fortunately, Bucky taught me to “dare to be naïve” so I have been open to the new evidence about randomness. Now I suspect that Bucky and I were a little off about this subtle subject. It isn’t surprising, probability and statistics are among the newer branches of mathematics having developed mostly after the calculus was well established. They have not had enough time to pervade our collective consciousness.

Do you think the world is fundamentally deterministic or random? What influences have shaped your thinking and biases about the subjects of randomness, uncertainty, probability, and statistics? Do you think the increasing focus on the role of randomness and uncertainty in our lives is an important trend?

Randomness Rules Our Lives

Is Mlodinow’s thesis that randomness rules our lives really so convincing? Evidently so. Mlodinow finds dramatic evidence of randomness in our economic lives. He retells the poignant story of Sherry Lansing who led Paramount Pictures to huge successes in seven consecutive phenomenal years. Then after three years of bad results, she left the company. Did Paramount let her go too quickly? Evidently so because the pipline she left behind was full of new hits that restored Paramount’s revenue and market share. Shouldn’t seven years of success earn the right to forgive a few bad years? What if another great leader happened to have their three consecutive bad years at the beginning of their tenure? Do we replace them before their ship comes in? Mlodinow cites many other examples including the fact that “And to Think That I Saw It on Mulberry Street” was rejected by publishers some 27 times before Dr. Seuss’ career launched. Mlodinow also shows that student grades are often random and independent of their skill and knowledge.

Should we insist that our students, our schools, and our business leaders perform, perform, and perform with no “bad” years allowed? Do you believe that performance results are somewhat random? We invest a lot in exam and executive performance. Given the evidence, is that wise?

Venn Diagram of sets A, B, and COne part of Kahneman’s Nobel-prize winning work addressed the conjunction fallacy. Let A, B, and C be statements represented by a colored circle in the venn diagram to the right. The only case in which they can be simultaneously true is in the small area where all three colors overlap. So it is much less likely (less area) for three statements to be simultaneously true than for any one of them to be true. However, when someone weaves a story filled with a lot of concrete details, it seems more vivid and hence more believable than the statements considered separately: that’s the conjunction fallacy. Evidence of people falling for this fallacy has been documented widely even in medicine and the court room. We humans are easily duped by a good story!

It is surprising that the Nobel prize for the work showing how “blind” humans are to the elementary logic of the conjunction fallacy was only awarded one decade ago! Humanity has only just yesterday identified this basic weakness in our cognitive function! Add to the conjunction fallacy the many other fallacies and biases that Taleb, Lehrer, and Mlodinow show us to be subject to and one can see that Emanuel Lasker who was world chess champion for 27 years got it right: “In life we are all duffers”!

What is the significance of our weakness in understanding uncertainty? Do these weaknesses of the human mind subject us to the ravages of randomness? Are they a consequence of an inherent randomness in reality? Or do they simply lead to the appearance of randomness?

Our weakness extends to our sensory organs and perception as well. Mlodinow notes

Human perception … is not a direct consequence of reality but rather an act of imagination. Perception requires imagination because the data people encounter in their lives are never complete and always equivocal.

Mlodinow illustrates the problem by explaining that the human visual system sends “the brain a shaky, badly pixelated picture with a hole in it” (due to the relative weakness of our vision outside the fovea and the blind spot). In addition to conjunction bias, the sharp shooter effect, the hot-hand fallacy, availability bias, confirmation bias, and more, it becomes evident that “When we look closely, we find that many of the assumptions of modern society are based … on shared illusions.” And his conclusion

It is important in our own lives to take the long view and understand that streaks and other patterns that don’t appear random can indeed happen by pure chance. It is also important, when assessing others, to recognize that among a large group of people it would be very odd if one of them didn’t experience a long streak of successes or failures.

What shared illusions do we hold? How often are our lives subject to pure chance events? How important is serendipity? Do you believe that a long series of failures or successes is just the result of luck? When is it luck and when is it skill? How can we tell the difference?

The problem of randomness is deeper still: even machine-enhanced human sensing and measurement are fundamentally random! In Walter Lewin’s excellent video introducing physics and measurement in MIT OCW’s Physics I course, he says “Any measurement that you make without any knowledge of the uncertainty is meaningless.” Understanding uncertainty is at the heart of scientific measurement. No physics experiment ever found an exact match between theory and the laws of nature: data points always appear at random! Then add in effects like Heisenberg’s uncertainty principle and we see that randomness and uncertainty are vital elements of experience: they are pervasive.

In view of the elementary role of uncertainty in our perceptual and physical experience, what can we say about reality? What is reality if experience is so imprecise, fuzzy, uncertain, and fallible?

Read the rest of this essay »

Share |

In Buckminster Fuller’s essay Guinnea Pig B, he lays out the hypothesis that the purpose of Humans in Universe is to support the integrity of cosmic evolution:

In our immediate need to discover more about ourselves we also note that what is common to all human beings in all history is their ceaseless confrontation by problems, problems, problems. We humans are manifestly here for problem-solving and, if we are any good at problem-solving, we don’t come to utopia, we come to more difficult problems to solve. That apparently is what we’re here for, so I therefore conclude that we humans are here for local information-gathering and local problem-solving with our minds having access to the design principles of the Universe and — I repeat — thereby finally discover that we are most probably here for local information-gathering and local-Universe problem-solving in support of the integrity of eternally regenerative Universe.
—R. Buckminster Fuller

This precept of the function of Humans in Universe is, to me, one of the most deeply motivating responsibilities that I have ever taken on as a working hypothesis. I love the way it engages me as a co-designer in Universe. And I love the way in which it inspires me to a higher purpose.

Recently I read a National Geographic news article that Time Will End in Five Billion Years, Physicists Predict and my mind went into a tizzy. The following fairy tale emerged:

A Cosmic Evolution Fantasy

Captain’s log of Brenda S______ dated 5,000,002,010 CE (that is, 5 three-illion, 2 one-illion and 10 years CE).

Galaxy Cluster (NASA)“I have just returned to Earth after a 7,042 year survey of our galaxy cluster testing the integrity of the fabric of space-time throughout the isotropic vector matrix. What a trip! Our team has verified that all the millennia of research and development by countless humans and other sentients throughout Universe has succeeded in holding time together: the Universe will continue for the foreseeable future! We have verified that all vital parameters for managing the entirety of the cosmos are within fail-safe tolerances!

“Of course, there are a few issues (there always are);

Read the rest of this essay »

Share |

Although I have always been interested in the mind and thinking, I have been suspicious of psychology and the cognitive sciences. Recently, I’ve been impressed by several TED Talks that address new ideas in the sciences of the mind. These subjects are starting to provide valuable insights into how the world really works. It is still wise to be skeptical, but we might have made enough mistakes in psychology that we now have some groundwork upon which to start figuring out what is really going on in our heads.

So I was delighted with the chance to go into more depth in the science of decision making by reading Jonah Lehrer’s 2009 book How We Decide and participating in a discussion with the Ben Franklin Thinking Society. First, some overall impressions of the book. I thought Lehrer gave a good account of how the emotional brain works and some strengths and weaknesses in our decision making. I really value how he presents so many examples of experiences and experiments to illustrate the subject. His conclusion, though adequate, did not bring it altogether for me (cognitive dissonanace is a good thing and it helped me write this post!). Jeannie was turned off by Lehrer’s bone-chilling accounts of airplane crashes and psychopaths. However, we both learned a lot about the neuroscience of decision making. For me it was a good read, if not a great book.

The nature of emotions

One major omission from the book was the lack of a diagram showing the relationships among the brain regions discussed. Jeannie drew a rough sketch entitled Brain Turmoil below to give some sense of how the pieces fit.Brain Turmoil by Jeannie Moberly

Apparently, the brain uses dopamine-mediated “prediction” neurons to recognize patterns (a dopamine “high” if the pattern fits and a “low” if the pattern is “off”). This effect delivers our “feelings” to a decision making center in the orbitofrontal cortex (OFC). In Lehrer’s synthesis the brain considers these often conflicting signals from its various parts until it forms a decision. Jeannie’s designation Brain Turmoil is apt: chapter 7 is entitled “The Brain Is an Argument”.

As I re-read Lehrer’s text trying to pinpoint what emotions are, I found his description too vague. Still I synthesized this working hypothesis: emotions are the self-communicated feelings, intuitions, or instincts formed by dopamine-mediated pattern detection centers in the brain. This gives a nice concrete notion of the nature of emotions that seems to fit well enough with the text and my experience. Does anyone know a better characterization of emotions?

Mistake Mystique

The message from the (sometimes excessively repetitive) middle part of the book is that both our “rational” and “emotional” brains can make serious mistakes. Lehrer recounts the emotional brain’s proclivity to find a pattern in any situation leading to grave errors whenever randomness is in play. For example, he explains the gamblers fallacy where one is rapturously deceived by occasional but completely random winnings leading to thoughts that “my turn has come” and the likelihood of bigger losses. He debunks the notion of streaks in sports citing the research of Gilovich, Vallone & Tversky that shows they are just random events that our brain misinterprets. There are more stories of this nature in the book. I had already encountered several from reading Fooled by Randomness by Nassim Nicholas Taleb which goes into great depth on this deficiency in the brain. Taleb details our weaknesses, but Lehrer also highlights some of our strengths and addresses how to make better decisions.

Read the rest of this essay »

Share |